

FROM A UNIQUE TETRASACCHARIDE SCAFFOLD TO A BROAD SEROTYPE COVERAGE SHIGELLA FLEXNERI VACCINE CANDIDATE

OL 81

Marielle Tamigney Kenfack, Catherine Guerreiro, Marion Bouchet, Laurence A. Mulard

Laboratory for Chemistry of Biomolecules, Institut Pasteur, Université Paris Cité, CNRS UMR3523 F-75015 Paris, France laurence.mulard@pasteur.fr

Shigella flexneri are Gram-negative enterobacteria and the main causative agent of endemic shigellosis, a major diarrheal disease especially in children under five from low- and middleincome countries. Disease burden calls for a *Shigella* vaccine that would induce broad serotype protection in the population most at risk. Protective immunity is believed to be achieved to a large extent by antibodies directed at the *Shigella* O-antigen (O-Ag), making it a prime target for vaccine development. Most *S. flexneri* serotypes exhibit closely related O-Ags built from the same backbone. Structural diversity reflecting serotype specificity derives from site-selective substitutions on a tetrasaccharide core (Figure 1) [1].

Figure 1. Backbone repeating unit (RU) from most *S. flexneri* O-Ags and type-specific substitutions thereof [1].

A semi-synthetic glycoconjugate was designed to help protect against *S. flexneri* serotype 2a. Promising data in phase 1 and phase 2a clinical trials support the development of novel strategies enabling serotype broadening to answer the need in the field [2,3].

This presentation illustrates the concept of synthetic glycan-based vaccines in the context of *S. flexneri*. Focus is on the design of functional oligosaccharide mimics of O-Ags representing the most prevalent serotypes. Going beyond original achievement [2,3], we report a concept whereby key RU building blocks featuring type-specific substitutions are built from a single fine-tuned tetrasaccharide scaffold by means of controlled 1,2-*cis* glucosylation of suitable acceptors. Chain elongation at either end of the glucosylated bricks and full deprotection delivered the required panel of linker-equipped type-specific oligosaccharides. The subsequent conjugation of the latter onto a protein carrier provided sets of potential immunogens representative of three different *S. flexneri* serotypes.

Immunogenicity data in mice will be discussed. The proof-of-concept for a broad coverage synthetic glycan-based *S. flexneri* conjugate vaccine will be illustrated.

References:

- 1. A. V. Perepelov AV et al, FEMS Immunol. Med. Microbiol. 2012, 66, 201.
- 2. D. Cohen et al, Lancet Infect. Dis. 2021, 21, 546.
- 3. A. Phalipon, L. A. Mulard, NPJ Vaccines, 2022, 10, 403.