

STEREOSELECTIVE GLYCOSYLATIONS

E.M. McGarrigle^a, K.E. Donaghy^a, J.J. Ruddy, M. O'Neill^a, O.G. Popa, D.A. Pepe, I. Pongener

^a UCD School of Chemistry, University College Dublin, Dublin, Belfield, Dublin 4, Ireland eoghan.mcgarrigle@ucd.ie

We will describe our efforts to develop stereoselective glycosylation reactions. We have adapted Denton's catalytic Appel methodology for the synthesis of glycosyl chlorides. The chlorides are first transformed *in situ* into iodides and then glycosides in a novel one-pot transformation of glycosyl hemiacetals to difficult-to-make β -mannosides and rhamnosides [1]. In contrast, the same protocol gives α -glucosides in high selectivity [2]. This selectivity switch will be discussed.

We have also investigated the role of remote substituents at the 4-position of galactosides and fucosides in influencing α/β -selectivity in glycosylations [3]. *para*-Nitrobenzoates gave high to excellent α -selectivity. The results of our mechanistic studies (experimental and computational) led us to propose that a non-classical hydrogen bond from the *ortho*-CH of benzoates to the β -triflate intermediate is important for the selectivity of the reactions of galactosides.

If time permits, results of our efforts to automate the synthesis of monosaccharide building blocks might be described.

Acknowledgements: We thank Research Ireland for funding (CDA/15/3625, GOIPG/2019/2747, GOIPG/2020/1129, GOIPD/2019/538).

References

- 1. a) I. Pongener, K. Nikitin, E. M. McGarrigle, *Org. Biomol. Chem.* **2019**, *17*, 7531; b) I. Pongener, D. A. Pepe, J. J. Ruddy, E. M. McGarrigle *Chem. Sci.* **2021**, *12*, 10070.
- 2. O. G. Popa, I. Pongener, D. A. Pepe, A. Chennaiah, E. M. McGarrigle manuscript in preparation.
- 3. a) K.E. Donaghy, D. A. Pepe, J. J. Ruddy, E. M. McGarrigle *manuscript submitted*; b) K.E. Donaghy, M. O'Neill, E. M. McGarrigle, *manuscript in preparation*.